液滴微流控 了解一下

365娱乐app官方版下载 2026-01-18 04:55:16 admin 7968 382
液滴微流控 了解一下

(3) 大小均匀,体系封闭 由于每个微液滴处在连续相中被彼此分开。每个液滴中的样品互不影响,这样就使得样品浓度保持相对稳定,且避免了样品之间的交叉污染。另外,水相微液滴由于被油相包裹,内部环境稳定,外部蒸发受到抑制,反应条件在短时间内所受外界的影响微乎其微,这些条件在宏观的实验中是很难实现的。此外,微液滴还可包裹单个细胞或者细胞团,甚至可对活生物体进行培养来测定特定刺激下所产生的可溶性代谢产物。

(4) 单分散性良好 由于多分散性所产生的液滴大小不同,传统的液滴方法在实际研究中很难进行定量分析,而液滴微流控技术所产生的微液滴凭借其良好的单分散性,使反应物的浓度保持相同,反应条件保证一致,因而有助于实验的定量分析与研究。此外,还可将检测装置集成于微流控芯片上,使液滴能被直接分析,从而极大地扩展了其应用范围。

2.液滴的生成方法

在微流控芯片上产生液滴,是一相流体在另一相不互溶或部分互溶流体中分散的过程,两种互不相溶的液体,以其中的一种作为连续相,另一种作为分散相,分散相以微小体积(10-15~10-9 L)单元的形式分散于连续相中,形成液滴。目前形成液滴的方法可以分为被动法和主动法两类。被动法是指通过控制微管道结构和两相流速比来控制液滴的生成,而主动法一般通过外加力来驱动和控制液滴的生成。

被动法主要包括T型通道法、流动聚焦法和共轴流聚焦法(如图 1所示)。T型通道法是产生微流控液滴最常用的方法之一,由Thorsen等最先提出。在T型通道法中,两相不相溶的流体在垂直的T型管道交叉口处相遇,在压力和剪切力的作用之下,流动相截断分散相,从而形成液滴。流动聚焦法由Anna等和Dreyfus等最先提出。在流动聚焦法中,三条流路聚焦一个管道中,分散相和流动相汇合于十字交叉管处,上下对称的流动相同时挤压分散相使其断裂,从而形成液滴。共轴流聚焦法是Cramer等最早用来制备微液滴的。在共轴流聚焦法中,孔道中心轴内插入尖嘴的毛细管,分散相和连续相处在管道内平行流动,分散相在进入连续相管道时,在连续相流体的剪切力作用下,被挤压断裂形成液滴。

图 13种被动产生微液滴的方法

(A) T型通道微流控芯片液滴发生方法;(B) 流动聚焦微流控芯片液滴发生方法;(C) 共轴流微流控芯片液滴发生方法。右侧为对应方法的原理示意图。其中有色部分为分散相,箭头所指方向为连续相流动方向。

主动法包括电驱动法和光驱动法等。常见电驱动法主要有介电泳法和电润湿法。介电泳法是从储液室中将液体拉出以形成液滴。生成液滴的大小与施加电场的大小和频率有关。电润湿法是用外加电场来改变流体与其接触面间的界面自由能,使液体浸润表面,电场关闭后,表面变疏水,之前浸润在表面的液体从储液池断裂,形成液滴。光驱动法是用强汇聚的光束产生两相微液滴的一种方法[]。Park等利用光驱动法将激光脉冲作用于水相,激光脉冲产生的能量促使水分子分解产生急剧膨胀的气体,从而在水油两相界面处形成气穴,截断水相进入到油相中形成液滴,这种方法能以每秒10000个的速度产生1~150 pL大小的液滴。

3.液滴微流控在生物医学中的应用

3.1 液滴微流控在分析检测中的应用

由于液滴的诸多特点,液滴微流控在取代笨重的生化实验室进行分析检测方面已展现出其独特的优势。它可以精确地对反应中的微液滴进行操控,并能够减少反应试剂的用量。同时在液滴中可以使用各种技术进行定性分析,液滴微流控体系已经在分析检测中得以应用。这种分析检测技术涉及到成像分析、激光光谱学、电化学、毛细管电泳、质谱、核磁共振谱、化学发光法检测等。

将液滴微流控系统和荧光偏振免疫分析相结合,可以从生物样品中快速检测和定量分析蛋白质标记物的特性,液滴微流控荧光偏振免疫分析平台成为用于分子检测中的一种新型工具,以此可用来控制食品或环境样品中的品质。相比于荧光共振能量转移方法(FRET),荧光偏振方法只需要对相互作用的双方之一进行标记,而且不需要将生物大分子分析物从样品中纯化和分离即可对其进行检测。Choi等利用液滴快速而精确地在奶牛的生鲜奶液中检测和量化牛血管生成素,并将被分析液的体积减小到1 nL以下,这比传统的荧光偏振免疫分析所需体积量减少了5个数量级(如图 2A所示)。

图 2液滴微流控应用于分子检测

(A) 运用气动微泵装置快速检测和定量蛋白质标记的液滴微流控荧光偏振免疫分析平台(dFPIA)原理图[46]。(B) 96通道的微型乳液生成阵列(MEGA)装置[47]。其中每个重复单元由4个T型收缩口组成。同时所有液滴产生装置由3个同轴环状气动阀门驱动。

同时液滴微流控在单分子检测中,不仅应用于生物大分子的检测,还有DNA中基因信息的提取,利用蛋白质标记可以在很低的复合样品浓度下检测机体健康与否。Zeng等研究了一系列微型乳液生成阵列装置(MEGA),引出许多列平行的液滴生成器集成在一起。这种MEGA芯片用一个集成的气动泵驱动液滴的生成,这96个通道可以保证每小时生成3.4×106 nL的液滴(如图 2B所示)。这样的模型使得驱动泵可以精确、可编程化的控制液滴的生成,从而确保了在单细胞和单分子检测中液滴的高定量数字化计算[48]。此外,液滴微流控还被应用在葡萄糖、醌类、β-半乳糖苷酶等分析检测中。

3.2 液滴微流控在药物递送和释放中的应用

在医药应用方面,药物载体系统的基本要求包括:(1)过程固定;(2)抑制药物降解;(3)改善药物的稳定性;(4)控制药物的递送行为[43,54]。液滴微流控为药物的递送和释放建立了一个强有力的平台,提供了新的研究方向。液滴中使用药物载体系统的典型例子就是蛋白质和缩氨酸治疗,它们在进入血液前在肠胃中的生物药效率很低[53]。

Kong等[55]将亲水性抗癌药物封装在单分散的生物相容性磷脂囊泡中,形成了核-壳结构的W/O/W型双乳液模型,双乳液液滴大小可根据不同流速控制在50~200 μm之间。这种结构克服了饱和磷脂在溶解性方面的限制和不饱和磷脂转换温度过低的问题,与直接置于水溶液中的药物相比展现出持久的药物释放作用(如图 3A所示)。Sarkar等[56]使用液滴微流控技术来评估乳腺癌细胞中的药物摄取、消逝与细胞毒性,并在单细胞和多细胞的相互作用中建立了适合药物筛选的液滴微流控平台。Pessi等[53]还将液滴微流控应用在蛋白质药物的治疗中(如图 3B所示)。通过微流控技术制作出W/O/W型超薄壳双乳液液滴,在内部相中装1%的牛血清蛋白,外部用聚乙烯醇、聚已酸内酯和聚乙二醇包裹,所有微粒的粒径都在23~47 μm之间,而且这种通过液滴微流控方法做出的微胶囊是单分散且无渗透的,药稳定性可达4周之久,微胶囊能在168 h内稳定释放30%的牛血清蛋白。

图 3 液滴微流控应用于药物递送与释放

(A) W/O/W乳液液滴。原理示意图及48 h后被收集的W/O/W乳液液滴(比例尺150 μm)[55]。(B) 左侧为内部中间流动相,伸展的毛细管插入圆柱形管内,内部流动相在油相中形成水相大液滴,带有超薄壳的液滴移入右边的采集管内,形成带有外部流动相的双乳液[53]。

4 总结与展望

本文综述了液滴微流控的主要特点以及制备方法,并对其近年来在生物医学中的应用进行了简要的概述。液滴微流控平台作为近年来快速发展的分析技术,由于其试剂用量少、分析速度快、单分散性良好等特点,已逐渐在生物医学等方面展现出独特的优势。由于制备条件简单,易实现等原因,目前大多数研究仍以被动法产生液滴为主。与主动法相比,被动法制备液滴往往具有速度快,通量高和操作简单等优势。但是,同样存在难以精确操作和可控性较差等缺陷。主动法通过光、电、声或气等方法可以有效地产生微液滴并实现对液滴较为精确的下游操控,但是往往由于制备工艺复杂,外部设备要求高等原因不适宜于大多数研究。

从目前液滴微流控芯片的发展趋势来看,生物医学领域内液滴微流控平台的应用还处于初期阶段,随着不断复杂的多功能化、集成化和智能化手段的应用,液滴微流控将在未来的生物医学领域得到更加深入的研究。当然,液滴微流控目前仍存在诸多挑战,主要在于以下几个方面:

(1) 芯片材质与加工工艺。目前聚二甲基硅氧烷(PDMS)和软光刻技术被广泛应用于微流控芯片的制备,但是为了进一步实现商业化生产和临床应用,更低廉,稳定的芯片制作材料,以及更简单便捷的芯片加工工艺也需要进一步的研究和探索。

(2) 高效灵敏的检测技术。由于液滴微流控的特点就是体积微小,液滴产生速度快,数量多,如何实现对大量微液滴进行快速检测分析也是未来液滴微流控应用推广的一个难点。

(3) 模块化芯片单元的大规模集成。大规模集成是微流控芯片的一个显著优势,但是如何将模块化的液滴微流控单元与上下游功能单元大规模集成于一个多功能的微流控平台并实现自动化智能操作,仍然需要进一步的努力和研究。虽然这些困难客观存在,但是基于当前微流控技术快速发展的趋势,我们有理由相信,液滴微流控未来将会克服这些困难,并在更多领域取得更大的发展。

参考文献略

此篇文章属于转载文章,来源:分析化学。作者:闫嘉航, 赵磊, 申少斐, 马超, 王进义。订阅号若有侵权或转载限制请联系我们(或在公众号下方留言),我们将第一时间联系您并进行删除。返回搜狐,查看更多

相关推荐

HTC One电信版评测导购
365娱乐app官方版下载

HTC One电信版评测导购

08-11 400